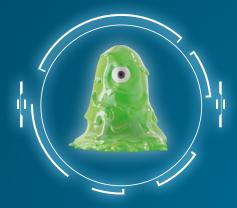


YOU HAVE THE POWER TO **DISRUPT AND DESTROY BIOFILM** TO ADVANCE HEALING


78% CHANCE OF BIOFILM

NON-HEALING WOUNDS NEED MORE THAN SILVER[™]

2 TECHNOLOGIES, 1 SOLUTION

Biofilm is one of the major causes of delayed wound healing^{1,2}

Biofilm is present in at least 78% of chronic wounds³

Biofilm can be defined as microbial cells adherent to a living or non-living surface, which are embedded within a self-produced matrix of extra-cellular polymeric substances (EPS). Biofilm provides tolerance to antimicrobial agents and can result in persistent inflammation and infection.^{4,5}

RECOVERY MODE

Biofilm is difficult to remove completely as it is attached to the wound bed. Biofilm can reform in as little as 24h, even following aggressive debridement.⁶

To prevent biofilm reformation, effective long-lasting antimicrobial protection is needed.⁶

ATTACK MODE

Biofilm can spread and form new colonies by constantly releasing micro-organisms from the mature biofilm structure.⁷

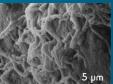
This can increase the risk of crossinfection both within the wound and in the surrounding environment.⁸

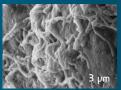

DEFENCE MODE

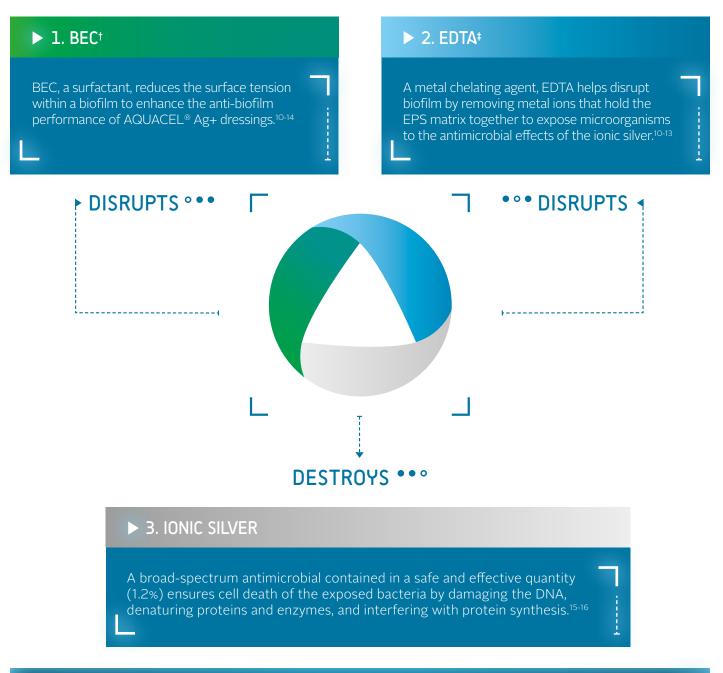
EPS shields micro-organisms from antibiotics, antiseptics and the host's immune response.⁵

This biofilm-specific defence and the inability to breach the EPS matrix contributes to a chronic inflammatory state in the wound environment.⁴

Biofilm cannot always be seen with the naked eye and sometimes even wounds that do not show clear signs of infection may contain biofilm.


Macroscopic view




High resolution scanning electron micrographs

MORE THAN SILVER[™] technology designed to **disrupt and destroy** biofilm

Specifically developed to win the battle against biofilm, MORE THAN SILVER[™] technology contains three components; ionic silver together with a surfactant and metal chelating agent, which work together to deliver superior*⁹ anti-biofilm performance.

The result of years of research

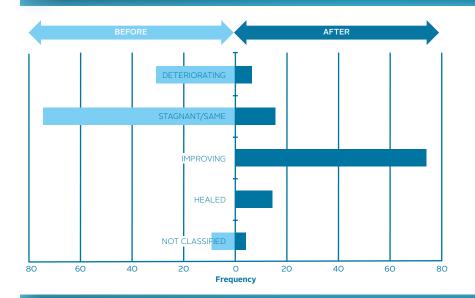
Developing MORE THAN SILVER[™] technology involved researching a wide range of biofilm-disrupting agents and surfactants in combination with antimicrobials.⁹

250,000 POTENTIAL COMBINATIONS WERE IDENTIFIED

60,000 WERE TESTED

* When compared to AQUACEL® Ag+ Extra dressing and other silver-only competitor dressings: ACTICOAT™ 7 and SILVERCEL™ Non-Adherent dressings † Benzethonium chloride

[‡] Ethylenediaminetetraacetic acid disodium salt


Winning the battle to **advance healing**

AQUACEL® Ag+ dressings advance healing in stalled, deteriorating, chronic wounds

A real life evaluation of clinical cases¹⁷

111 PATIENTS ACROSS 60 CENTRES IN UK AND IRELAND

WOUND DURATION RANGING FROM 1 WEEK TO 30 YEARS

54% of wounds showed clinical signs of

biofilm presence at baseline

78% of wounds

healed or progressed to healing during an average evaluation period of 3.9 weeks

99% of clinicians

would recommend the use of AQUACEL[®] Ag+ Extra[™] dressings

Case studies: Advancing healing in chronic wounds

Example 1 - the wound:

Diabetic foot ulcer (6+ months) with the following clinical signs: odour, exudate, slough, suspected biofilm.

Results

AQUACEL[®] Ag+ dressings: peri-wound skin improved, wound bed improved, healed in 5 weeks.

Example 2 - the wound:

Stalled foot ulcer (3 months): no improvement following antibiotic therapy and standard silver dressing.

Results

AQUACEL® Ag+ dressings: change from sloughy to granulation tissue. Ulcer healed in less than 7 weeks.

On presentation

15 days

To learn more about AQUACEL® Ag+ or to arrange a visit from your ConvaTec representative, please call

D ConvaTec

ConvaTec (Australia) Pty Limited. Customer Support Freecall: 1800 339 412 www.convatec.com.au

ConvaTec (New Zealand) Limited. Phone: 0800 441 763 www.convatec.co.nz

1. Hurlow, J., Couch, K., Laforet, K., Bolton, L., Metcalf, D. et al. (2015). Clinical Biofilms: A Challenging Frontier in Wound Care. Advances in Wound Care, 4(5), 295-301. 2. Metcalf, Bowler. Biofilm delays wound Hurlow, J., Couch, K., Laforet, K., Bolton, L., Metcalf, D. et al. (2015). Clinical Biofilms: A Challenging Frontier in Wound Care. Advances in Wound Care. 4(5), 295-301.
Metcalf, Bowleished data. JWC; 20-25.
Gupta AN et al. Development of a novel, highly quantitative in vivo model for the study of biofilm-impaired cutaneous wound healing. Wound Rep Reg (2011) 19 400-410.
Halanda N et al. Development of a novel, highly quantitative in vivo model for the study of biofilm-impaired cutaneous wound healing. Wound Rep Reg (2011) 19 400-410.
Halanda N et al. Development of a novel, highly quantitative in vivo model for the study of biofilm-impaired cutaneous wound healing. Wound Rep Reg (2011) 19 400-410.
Halanda N et al. Development of a novel, highly quantitative in vivo model for the study of biofilm-impaired cutaneous wound healing. Wound Rep Reg (2011) 19 400-410.
Halanda N et al. Development of a novel, highly quantitative in vivo model for the study of biofilm-impaired cutaneous wound healing. Wound Rep Reg (2011) 19 400-410.
Halanda N et al. Development of a novel, highly quantitative in vivo model for the study of biofilm-impaired cutaneous wound healing. Wound Rep Reg (2011) 19 400-410.
Halanda N et al. Development of a novel, highly quantitative in vivo model for the study of biofilm-impaired cutaneous wound healing. Wound Rep Reg (2011) 19 400-410.
Halanda N et al. Development of a novel, highly quantitative in vivo model for the study of biofilm-impaired representation and recalcitrance with a novel anti-biofilm envolu dressing. Wound Medicine 14 (2016) 6-11.
Naite T and antimicrobial resistant WO12136968 Parsons World patent application 11th October 2012.
Hanin E., Brady K.M. & Greenberg E.P. (2006). Chelator Induced biofilm: quantitative comparative analysis using a aubiternary cationic surfactant WO12136968 Parsons World patent application 11th Oct 17. Metcalf DG, Parsons D, Bowler PG. Clinical safety and effectiveness evaluation of a new antimicrobial wound dressing designed to manage exudate, infection and biofilm. Int Wound J 2017; 14: 203-213. AQUACEL, AQUACEL Extra and Hydrofiber are trademarks of ConvaTec Inc. All trademarks are the property of their respective owners. ©2019 ConvaTec Inc. AP-020312-MM W793 May 2021